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Identification of protein coding
regions by database similarity

search

Warren Gish & David J. States

Sequence similarity between a translated nucleotide sequence and a known biological
protein can provide strong evidence for the presence of a homologous coding region,
even between distantly related genes. The computer program BLASTX performed
conceptual translation of a nucleotide query sequence followed by a protein database
search in one programmatic step. We characterized the sensitivity of BLASTX
recognition to the presence of substitution, insertion and deletion errors in the query
sequence and to sequence divergence. Reading frames were reliably identified in the
presence of 1% query errors, a rate that is typical for primary sequence data. BLASTX is
appropriate for use in moderate and large scale sequencing projects at the earliest
opportunity, when the data are most prone to containing errors.

Most primary sequence data is obtained as nucleic acid,
while much of the biological interest lies in the encoded
protein. Inference of likely protein coding regions is often
based on statistical features, such ascodon usage'* and the
locations of putative splice site signals®, but significant
false positive rates are common. In contrast, similarity
between a conceptually translated nucleotide sequence
and a known protein sequence may be highly significant
statistically, which suggested a more discriminating
approach to inferring coding potential. We present a
software tool, BLASTX, that can be used to probe a
nucleotide sequence directly for the presence of protein
coding regions by identifying segments that encode
significant similarity to members of a protein sequence
database, a technique that may also be used to assign
putative function.

Molecular sequence determination isacomplex process,
the course of which may be significantly altered when
homologuesorrelated sequencesareidentified by database
search. Search tools should therefore be amenable to use
in early stages of a sequencing project, even though the
data may be more prone to containing errors. Protein—
protein comparison methods are important in nucleotide
sequencing projects because distant evolutionary
relationships which appear to be merely coincidental at
the nucleotide sequence level can be meaningfully
discerned at the protein sequence level®. The amino acid
alphabet is expected to be superior to the nucleic acid
when sequences are diverged by as few as 50 amino acid
PAMs (point accepted mutations per 100 residues), due to
degeneracy in the genetic code and functional constraints
on protein structure®. For example, the coding sequences
for cystic fibrosis transmembrane regulatory (CFTR)

protein’ and the human multiple drugresistance protein®,
two members of the family of ATP-binding proteins,
share at best a region of 70% identity in 60 nucleotides
(only marginally significant statistically), while the two
sequences are highly similar at the protein level (P<107?).

Early sequence data may not only be more prone to
errors, but may also be more abundant. These factors
cause increased dependence to be placed on the speed,
sensitivity and convenience of the software tools used.
The selectivity of a search method, or its ability to rank
matches by precise statistical criteria, takes on greater
importance as well. When mixed with biologically relevant
matches, purely chance matchesadd to the tedium of data
analysis and may obscure the presence of the former.
These issues are addressed by the software tool presented
here.

The BLASTX program has been successfully employed
to identify likely protein coding sequences in thousands
of partial cDNA sequences from human brain tissue
(expressed sequence tags; ESTs)® and in genomic cosmid
clones from Caenorhabditis elegans'®. BLASTX allows
protein—protein comparisons to be considered when only
uncharacterized nucleotide query sequence is available.
The program conceptually translates query sequences in
allsixreading frames (three on each strand) and compares
each of these full-length translation products with a
comprehensive protein sequence database in a single
pass. Non-coding sequences tend to yield alignments of
marginal significance at best that are selectively excluded
from BLASTX output on the basis of a statistically
determined cutoff score'*. In Monte Carlo simulations,
BLASTX is effective at recognizing statistically significant
sequence similarities in the presence of 1% data errors, an
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BLASTX 1.2.7MP (31-Mar-92]

Query= YSCMISIA §.cerevisiae mitochondrial C-1-Tetrahydrofolate synthase gene
(4359 residues)
Translating both strands of query sequence in all 6 reading frames

Database: PIR 32.0 (complete), March 31, 1992
40,298 sequences; 11,831,134 total residues.
Smallest
Poisson
Reading High Probabilit:

Sequences producing High-scoring Segment Pairs: Frame Score P({N)
A28174 Cl-tetrahydrofolate synthase precursor, mitocho... +1 5008 0.0
A29550 Cl-tetrahydrofolate synthase - Yeast (Saccharom... +1 1775 0.0
A31903 Methylenetetrahydrofolate dehydrogenase (NADP+)... +1 800 1.4e-218
A35367 *Cl-tetrahydrofclate synthase - Rat +1 797 1.0e-214
235942 *Formate--tetrahydrofolate ligase - Clostridium... +1 382 9.2e-108
A28185 *Formate--tetrahydrofolate ligase - Clostridium... +1 344 2.2e-105
A35667 *TECl protein - Yeast (Saccharomyces cerevisiae) +3 581 1.2e-86
RSRT19 Ribosomal protein L1% -~ Rat =1 429 9.0e-59
236554 Ribosomal protein L19 - Mouse -1 428 1.3e-58
RSDOSE Ribosomal protein Li9%e - Slime mold (Dictyostel... -1 419 3.4e-57
JS0662 *Methylenetetrahydrofolate dehydrogenase (NADP+... +1 187 1.2e-42
DEHUMT Methylenetetrahydrofolate dehydrogenase (NAD+) ... +1 203 4.5e-39
A33267 *Methylenetetrahydrofolate dehydrogenase/ methy... +1 199 4.6e-39
RSMXE Ribosomal protein E - Methanococcus vannielii |... -1 157 6.4e-16
516540 Ribosomal protein L19eR - Haloarcula marismortui -1 112 7.9e-09
RSHSH4 Ribosomal protein HL24 - Haloarcula marismortui... -1 104 1.4e-07

{ Several alignments deleted }

>R5RT19 Ribosomal protein L19 - Rat Length = 196
Score = 429 (224.4 bits), Expect = 9.0e-59, P = 9.0e-59
Identities = 77/144 (53%), Positives = 109/144 (75%), Frame =

Query: 4341 KLVKNGTIVKKSVTVHSKSRTRAHAQSKREGRHSGYGKRKGTREARLPSQVVWIRRLRVL 4162
KL+K+G I++K+VTVHS++R R ++ ++R GRH G GKRKGT +AR+P V W+RR+R+L
Sbict: 43 KLIKDGLIIRKPVTVHSRARCRKNTLARRKGRHMGIGKRKGTANARMPEKVTWMRRMRIL 102
/
Query: 4161 RRLLAKYRDAGKIDKHLYHVLYKESKGNAFKHKRALVEHI IQAKADAQREKALNEEAEAR 3982
RRLL +YR++ KID+H+YH LY KGN FK+KR L+EHI KAD R K L ++AEAR
Sbjct: 103 RRLLRRYRESKKIDRHMYHSLYLKVKGNVFKNKRILMEHIHKLKADKARKKLLADQAEAR 162
Query: 3981 RLKNRAARDRRAQRVAEKRDALLK 3910
R K + AR RR +R+ K4+ +4K
Sbjct: 163 RSKTKEARKRREERLQAKKEEIIK 186
Parameters:
E = 0.100, S = see table
W =3, T = see table, X = see table
M = PAM120
C = 0 {(Standard genetic code)
H = n/a, V = 500, B = 250
Frame Length E g T X
+3 1452 0.076 65 13 19
+2 1452 0.094 67 13 20
+1 1453 0.082 71 13 21
-1 1453 0.097 67 13 20
-2 1452 0.094 68 13 20
-3 1452 0.081 65 13 19
Statistics: Expected Observed
Frame Lambda Lambda/1n2 K H High Score High Score
+3 0.378 0.546 ¢.212 1.45 58 (31.6 bits) 581 (317.0 bits)
+2 0.363 0.524 0.205 1.21 60 (31.4 bits) 59 (30.9 bits)
NOTE: the cutoff score is greater than the expected high score
+1 0.343 0.495 0.187 0.879 63 (31.2 bits) 5008 (2480.2 bits)
-1 0.363 0.523 0.203 1.24 60 (31.4 bits) 429 (224.4 bits)
-2 0.357 0.51% 0.195 1.07 61 (31.4 bits) 63 (32.5 bits)
NOTE: the cutoff score is greater than the expected high score
-3 .378 0.545 0.218 1.41 58 (31.6 bits) 55 (30.0 bits)
NOTE: the cutoff score is greater than the expected high score
# of neighborhood words in guery = 114,650
# of exact words scoring below T = 1461
# of word hits against database = 82,603,593
¥ of failed hit extensions = 70,774,341
#+ of successful extensions = 42
4 of overlapping HSPs discarded = 6§
# of HSPs reportable = 36
# of database sequences with at least one HSP = 16
No. of states in DFA: 598 (59 KB) Total size of DFA: 1010 KB (1024 KB)

Time to generate neighborhoods:
No., of processors used: 8§
Time to search database: 141.78u 0.24s 142.02t
143.61u 2.63s 146.24t

1.15u 0.09s 1.24t

Total cpu time:

Fig. 1 Sample BLASTX output. A yeast MIS1 tetrahydrofolate
synthase gene sequence'” (GenBank accession number J03724) was
used as a BLASTX query sequence against release 32 of the PIR
database’®. The complete list of one-line descriptions of matching
database sequences is shown for a probability cutoff of 0.1. The
reading frame of the single highest-scoring segment is indicated
alongside its score, followed by the Poisson probability for the most
significant cluster of segments (which can conceivably involve
segments in other reading frames, but in this example never did). As
well as the expected synthase protein alignments, highly significant
alignments between several 119 ribosomal proteins® (data not
shown) and an unannotated region of the query sequence were
identified. Only a short fragment of the yeast L19 sequence has been
published?'. The presence of TEC1 coding sequence located 5' to the
MIS1 gene has been noted'. Residue coordinate numbers for the
query seguence are given with respect to the original nucleotide
query sequence. Cpu times were reported in seconds for user (u),
system (s), and the total (t) of user + system for one of the 8
processors.
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error rate that is typical for raw molecular sequence data.
Homologues were identifiable by the program in
approximately 17% of the raw, human EST sequences
examined®.

BLASTX offers distinct advantages over related tools
such as BLASTP?, by combining the conceptual translation
and database search procedures into a single step and by
collating the results from searches with all six reading
framesinto asinglereport; furthermore, withitsknowledge
of the matches appearing in all reading frames, BLASTX
applies Poisson statistics to combine marginally significant
matches in different frames from the same strand to yield
higher estimates of statistical significance than would be
obtained in separate BLASTP searches.

The converse problem, that of searching with protein
query sequence against a translated nucleotide sequence
database, isaddressed by other programs such as TFASTAM
and PATMAT'™'®, Coercing TFASTA to perform the
converse of its designed function would be impractical for
even modest sized protein databases, as each protein
sequence would require a separate invocation of the
program. PATMAT does however provide the flexibility
of using nucleic acid sequence as the query in a search,
translating the nucleic acid in all six reading frames, and
comparing the full-length products against either a
standard protein sequence database or a concise database
of protein sequence “ blocks”!. Searches against a blocks

Table 1 Comparison of BLASTX and BLASTP database
searches to identify ESTs

Query Maximum Number of database sequence matches

sequence HSP score BLASTX and BLASTX BLASTP
BLASTP only only
cDC2 40-49 835 1850 37
50-59 307 75 0
60-69 282 1 0
70-79 258 0 0
80-89 210 0 0
90-99 124 0 0
100-109 65 0 0
110-119 53 0 0
>120 17 0 0
CFTR 40-49 295 132 2705
50-59 231 196 6
60-69 92 4 0
70-79 76 0 1
80-89 56 0 0
90-99 34 0 0
100-109 23 0 0
110-119 19 0 0
=120 17 0 0

The sensitivity of searches performed using BLASTP and
BLASTX was compared in searching release 22.0 of the
SWISS-PROT database®. Two sample query sequences
were used, human cdc2 kinase (CDC2)%, and the cystic
fibrosis transmembrane conductance regulator (CFTRY, a
large protein with many distant homologues but few
closely related ones. For both genes, BLASTP searches
were performed using the protein sequence from SWISS-
PROT and BLASTX searches were performed using the
corresponding cDNA (mRNA) sequence from the GenBank
database. Low compositional complexity and repetitive
sequences were eliminated from the query sequences by
pre-filtering with XNU (ref. 34). Alignments were scored
with the PAM120 matrix'>¢. The number of matches for
each score interval are reported.
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database can be practically performed with lower
thresholds of significance than against a comprehensive
protein database, thus permitting increased search
sensitivity; the smaller size of a blocks database may yield
shorter search times, as well. In contrast, the use of Karlin-
Altschul statistics'! by BLASTX permits precise significance
estimates and thresholds to be established; and for
comprehensive database searches, BLASTX is severalfold
faster.

Acceptable computational efficiency is required for
practical use in modest to large scale sequencing
applications. Without the aid of an automated sequencer,
an individual researcher may generate ten to twenty runs
of raw sequence daily, each 300 or more nucleotides in
length and totalling several kilobases; automated
sequencing laboratories may exceed this throughput by
severalfold. Practical database search tools mustbeable to
maintain pace with the laboratory, using available
computational resources and without overburdening the
individual with random, uninformative matches that must
each be evaluated in subsequent steps. If the sense strand
or reading frame has not been clearly established, it may
be necessary to compare all six reading frames in these
data against a comprehensive database of published
sequence to find significant similarities. BLASTX is
effective in this capacity due to its speed, sensitivity,
selectivity and convenience; additional speed is achieved
by employing parallel processing on a common multi-
purpose, multi-processor computer platform.

Results and discussion

To search a protein sequence database with a nucleotide
query sequence, BLASTX translated the query in all six
reading frames, built one neighbourhood table®
containing pointersinto each of these reading frames, and
searched the database in a single pass. An example of the
effectiveness of this strategy is shown in Fig. 1, the partial
BLASTX output generated using the gene sequence for
Saccharomyces cerevisiae tetrahydrofolate synthase'” as a
query to search the PIR protein sequence database’®. The
enzyme itselfand several closely related homologues were
seen at the top of the list of matches, along with the
previously noted TEC! protein encoded in flanking
sequence', which were translated in positive- or plus-
strand reading frames. These matches were followed by a
set of highly significant (P<10°¢) alignments with several
L19 ribosomal protein sequences®, but the reading frame
involved in these alignments resided on the opposite
strand in an unannotated segment of the query sequence.
Itappeared very likely that the yeast homologue of the L19
protein was cloned and sequenced incidentally. Two
fragments of the L19 protein have been identified by
direct peptide sequencing®, but the segment identified
here was more extensive and provided the encoding
nucleotide sequence.

Thereliability of simultaneoustranslation and alignment
is described in Table 1, for which comparative searches
were performed with BLASTP and BLASTX using
sequences for human cdc2 kinase (CDC2)*and thehuman
CFTR’ as queries. All of the alignments scoring over 80
with direct protein searches of the protein database
(BLASTP) were identified by BLASTX using mRNA
queries, and no erroneous alignments were introduced
(Table 1, column 3). All 258 of the distantly related CDC2
homologs found by BLASTP (maximum HSP scores

between 70-79, see Methodology) were correctlyidentified
by BLASTX without introducing false positive matches.
All but one of the 77 distantly related CFTR homologues
found by BLASTP were correctly identified by BLASTX,
again without introducing false positive matches. For
alignments with maximum HSP scores of less than 70,
many discrepancies were seen between the BLASTP and
BLASTX searches. These alignments were not statistically
significantand the discrepancies can thereforebeattributed
to random events. The majority of low-scoring matches
found by BLASTX but not BLASTP were in reading
frames different from the true one; the matches found by
BLASTP but not BLASTX were not found by BLASTX
either because of its use of a larger neighbourhood
threshold T or due to EST fragmentation.

The cost of missing data

Karlin and Altschul derived an analytic expression for the
probability of finding an alignment above any set score
starting at given positions in two sequences''. The effective
number of such starting points in a database search is
proportional to the product of the query sequence length
and the size of the database. In BLASTX searches, the
reading frame and orientation of the query sequence are
unknown prior to the search. In querying with all six
reading frames, BLASTX searches a space roughly six
times the size of a single-frame BLASTP search, thus
decreasing the significance of any alignments found by a
factor of about 6, or by a score of = 2.6 bits. In practice, the
impact of this ambiguity is minimal (Table 1). To ensure
a manageable size for the neighbourhood word list (see
Methodology) with nucleotide query sequences of
potentially greatlength, BLASTX uses a marginally higher
neighbourhood word score threshold, T, as compared to
the value used by BLASTP. This results in a slight relative
reduction in sensitivity of BLASTX in its detection of
lower-scoring alignments and accounts for the BLASTP-
BLASTX difference seen with CFTR (Table 1).

Sensitivity to sequence data errors

Surveys suggest that the GenBank sequence database?
contains errorsat an overall rate of approximately 1 in 300
nucleotides, of which about halfare insertions or deletions
(indels)?. For maximal-scoringsegment pair (MSP)-based
search algorithms such as BLAST (see Methodology),
sequencing errors may alter a statistically significant MSP
and prevent its recognition in two ways: indels in one or
both sequences may break the MSP info two or more
shorter segments that individually score below the
threshold of significance; and substitution errors may
decrease the score of the MSP to a value below the cutoff
and perhaps alter its end-points.

The degradation of an alignment score by individual
substitution errors is often small relative to the cutoff
score for reporting matches, so little or no significant loss
of search sensitivity is expected even at error rates
encountered in raw molecular sequence data (<1
substitution per 100 amino acids)®. In contrast, frameshift
sequencing errors have a significant impact on search
sensitivity, particularly when the query and target
sequences are highly diverged®. Even in the absence of
sequencing errors, naturally occurring indel mutations
can prevent homologue detection. With increasing
divergence, the expected contribution to an alignment
score by each pair of aligned residues falls while the
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Fig. 2 Probability of finding an MSP in the presence of indel
errors and mutations. The probability that a query
sequence 300 nucleotides (100 codons) long would retain
at least one ungapped alignment of sufficient length to
permit its identification in a database search was plotted
versus PAM distance between the encoded amino acid
sequence and a homologue for alignments of (a) at least 35
bits desired significance and (b) at least 45 bits desired
significance. Frameshift errors were introduced at rates of
0, 0.001, 0.003, 0.01, 0.03 and 0.1 per nucieotide, as
indicated. Naturally occurring frameshift mutations were
modeled at a rate of 5x10 per nucleotide per (amino acid)
PAM,; this rate was chosen by extrapolating from resuits of
multiple protein sequence alignments (data not shown; ref.
26). Scoring was performed in all cases with a PAM120
substitution matrix. The value of K (Methodology, Equation
1) in the Karlin-Altschul analysis' is typically about 0.2, so
a score of 45 bits corresponds to a less than 1 in 10,000
chance of finding an alignment of equal or greater
significance, when comparing a query of length 750
nucleotides in all six reading frames against a protein
sequence database of 10 million residues; and 35 bits
corresponds to about a 1 in 10 chance under the same
conditions, or a marginal threshold for statistical
significance.

expected length of a statistically significant HSP rises'.
The increased length provides greater opportunity for
indel mutations and frameshift errors to impart their
deleterious effects on search sensitivity, a situation which
is exacerbated by the tendency of indel mutations to
appear more frequently with increasing PAM distance?.

Frameshift sequencing errors are shown in Fig. 2 to
havereduced the probability thatan MSP waslongenough
to accumulate a score detectable above random. Under
optimal conditions of error-free data at 120 PAMs
divergence, an alignment significant to at least 35 bits was
detected with a probability of 94%; in the presence of 1%
indel errors, the probability was 86%. Overall, sequencing
errors at rates as high as 3 indels per 1,000 nucleotides
made little difference in the probability of detection; but
even with perfect sequencing data, homologues could not
be reliably identified at 250 PAMs divergence, due in part
to the use of the sub-optimal PAM 120 scoring scheme®2,
Neglecting indel mutations and all sequencing errors, if
the optimal, PAM250 matrix for scoring homologues
diverged by 250 PAM:s is used instead, the expected score
between true homologues is about 0.36 bits per aligned
residue pair'? or 36 bits over the entire modeled length of
100 codons; when the same homologues are scored with
the PAM 120 matrix, the expected score drops to 0.17 bits
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per aligned residue pair'?, or 17 bits over the entire length.
This is 18 bits (or a factor of 2'* =~ 10°*) below the
threshold of 35 bits deemed necessary to achieve marginal
significance in a typical database search (Fig. 2 legend),
but due to a large variance in the distribution of segment
scores (data not shown), the observed probability of
detection at 250 PAM:s divergence was >4% (Fig. 2a).

The empirical behaviour of BLASTX in the presence of
sequencing errors was assessed by comparing the results
of BLASTX searches performed with 275 error prone
cDNA sequence fragments (ESTs)*'%#"? to the results
obtained by BLASTP with the corresponding finished
protein homologue sequences used as queries against the
SWISS-PROT database?. EST identification was originally
based on searches of the NCBI non-redundant database™;
the extended coverage of this database permitted more
ESTs to be positively characterized. Figure 3 exhibits the
effects upon search performance by sequence errors and
EST fragmentation. For approximately one quarter of the
ESTs, all of the matches found by BLASTP were correctly
identified by BLASTX. At the other end of the spectrum,
in twelve of the 275 cases all of the matches found by
BLASTP were missed by BLASTX. Manual inspection
revealed that in most of these cases, failure to identify a
homologue was a result of frameshift errors or truncation
ofthe cDNA sequencein the EST, leavinglittle or nointact
protein coding sequence. For the remaining three quarters
of the ESTs, BLASTX correctly identified at least some of
the matches found by BLASTP, thus permitting a
homologue to be identified without resorting to the use of
the latter program.

In addition to the effects imparted by sequence errors
and EST fragmentation, some BLASTP matches mayhave
gone unreported by BLASTX because they fell just below
the cutoff threshold for BLASTX yet just above the
threshold for BLASTP, where the two score thresholds
differ by the approximately 2.6 bits explained earlier; but
with the expectation cutoff of 0.01 that was used, this
threshold effect should have been relatively small. As a
caveat to this study, the 275 ESTs were chosen on the basis
of previous, positive characterization by BLASTX, which
constitutes some degree of selection for ESTs of higher
quality — particularly with fewer frameshift errors and
more complete coding regions. While BLASTX was
responsible for the initial characterization, the results in
Fig. 3 may tend to present a best-case distribution.

Theresultsin Figs 2 and 3 showthatinaccurate sequence
data can degrade the sensitivity of database searches. As
more error prone data enters the public databases, it
becomes increasingly difficult and costly for other
investigatorsto check their results. When BLASTX reports
adjacent high-scoring segment pairs (HSPs) appearing in
different reading frames on the same strand of the query,
the possibility of frameshift errors — the errors which are
of greatest concern—should be investigated and corrected
as appropriate. While minimizing the error rate is one
concern in a sequencing project, practical considerations
often demand that error prone data be released to the
public. This provides some of the impetus for maintaining
a specialized, public repository of EST sequence data?’?,

Caveats: some causes of misleading results

Several phenomena complicate the statistical analysis of
similarity searches. These areindependent of the algorithm
used to perform the search, but must be considered in the
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interpretation of BLASTX output. Genomes containlocal
regionsof strongly biased residue composition and reduced
information content. Such regions of low compositional
complexity sequence are present in the public databases
and may be present in a query sequence or its translations,
such that a large number of high scoring but biologically
uninformative alignments are observed. Inappropriately
high statistical significance may be assigned to these
alignmentsbecauselocal biasesin amino acid composition
are not encompassed by the random sequence model
assumed in Karlin-Altschul statistics. The biological
significance of matches against low complexity regions
must, therefore, remain suspect.

At the next level of order above low-complexity
sequences, complexbut repetitive sequence elements such
asthe human Alu family®' are present in genomes and are
particularly frequent in higher eukaryotic genomes. It is
common for a query sequence to contain a segment
derived from such a repetitive element, even if the query
is a cDNA. Searches performed with such a query may
produce alignments that appear statistically significant
wherever members of the same repetitive sequence family
are present in the database. Proteins may be partially
encoded by repetitive sequence elements, as well. For
example, the PIR entries for human complement factor 5
(C5HU), decay accelerating factors 1 and 2 (A26359,
B26359),the HLA-DR B 1 precursor (S01441),and platelet
glycoprotein IIb (A28411) all appear to contain translated
Alusequences®. BLASTX searches with a query sequence
containing an Alu element may score highly against these
database sequences, even if the Alu sequence in the query
is not translated in vivo and no further homology exists
outside of the repetitive element.

Repetitive sequence elements may be filtered from a
query sequence by searching against a concise database of
exceptional sequences that includes the six frame
translations of Alu®. Segments of the query that match
against the exceptions database can then be excluded
from the full database search by masking with the IUB
nucleic acid code N (for “any” ); such masked segments
were translated by BLASTX into the ITUB amino acid code
X (for “ unknown” ) and would not appear in alignments
when the default PAM120 matrix was used. Low
complexity sequences can be filtered by analysing local
residue composition® or by identifying stretches of short
period, internal repeats in the amino acid translations *
and then masking these segments.

Fig. 3 Comparison of EST and homologous protein database searches.
For each of the 275 non-Alu containing cDNA sequences in pre-release
/ 1.0 of the dbEST database®?® for which a homologue was identified by a
] BLASTX search of the NCBI non-redundant database®, the resuits of a
_," BLASTX search against release 22.0 of SWISS-PROT?® were compared
to a BLASTP search using the highest scoring protein homologue as the
query. Both the protein queries and the protein database sequences
were pre-filtered with the XNU program (J.-M. Claverie & D.J.S.,

-t manuscript submitted) to eliminate improbabie residue clusters and
4 short period repetitive sequences. Based on the sizes and compositions
of both the database and the queries, only matches with less than a 1%
chance of random occurrence'' were counted. For each EST, the Fig.

5 shows the fraction of the BLASTP sequence similarities which were
V4 identified by BLASTX, after sorting by this fraction. The abscissa is
labelled with both the EST index number and the fraction of the total
number of ESTs.

Our results show that BLASTX is a computationally
efficient tool for finding gene homologues without prior
knowledge of the coding regions or reading frames in a
nucleotide query sequence. Pseudogenes are true
homologuesand mayachieve significantalignment scores,
as well, but they can be distinguished from functional
coding regions by other criteria, such as the presence of
stop codons and the absence of promotor elements and
splice sites. BLAST identifies many related sequences even
ifthe query sequenceiserror prone, butatlower sensitivity.
Thegreatestimpact of query errors on search performance
is expected in comparisons between distantly related
proteins, and this effect was confirmed empirically.

BLAST identifies local regions of similarity which are
ungapped. Multiple local regions of similarity may
contribute to the overall score, but algorithms such as the
dynamic programming approach of Smith and
Waterman® may also provide increased sensitivity when
insertion and deletion errors are present®, albeit at
increased cost. Even with that algorithm, however, gap
initialization is often heavily penalized, such that a small
number of insertion or deletion errors rapidly degrades
the significance of an alignment.

Methodology

Algorithms and implementations. The BLAST algorithm
approximates a well defined measure of local sequence similarity
based on a matrix of similarity or substitution scores for all possible
pairs of residues®. The algorithm identifies ungapped, aligned pairs
of sequence segments with locally maximum scores which meet or
exceed a parameterized cutoff score, S. These segments are referred
to as “ high-scoring segment pairs” (HSPs), and the highest scoring
segment pair derivable from any two sequences is their maximal-
scoring segment pair (MSP). BLASTX, based on this rapid,
probabilistic algorithm, is used to find statistically significant HSPs
between a translated nucleotide query sequence and a target protein
sequence database. When an HSP is found, the analysis of Karlin and
Altschul' is used to estimate the significance of its score (Equation
1 below).

No prior knowledge of the reading frame or direction is assumed
by BLASTX; all possible reading frames in both orientations of the
querysequenceare translated into protein sequence using the standard
genetic code, with eight other genetic codes available to choose from
using a simple command line parameter. The PAM (point accepted
mutation) amino acid substitution model s typically used for scoring
similarity between peptide sequences®, wherein identities and
conservative replacements receive positive scores, and non-
conservative replacements, for example leucine for aspartic acid,
receive negative scores. By default, BLASTX uses a PAM 120 matrix
scaled to 0.5 bit per unit score'.

Stop codons are not explicitly included in development of the PAM
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theoretical framework®. We score alignments between amino acids
and stop codons as equivalent to the least-favorable (most negative)
substitution score observed between any two amino acids in the
PAM matrix. All substitution scores are readily accessible to the user
asrowsand columns in the score matrix file read by the program and,
as such, were user-modifiable. Alignments incorporating a stop
codon can be effectively forbidden by applying a large negative
penalty to any substitution for a stop codon, or scores might be
chosen to represent the log-odds that a stop codon resuited from
experimental error.

The expected number of alignments scoring S or greater in a
comparison between two random sequences of lengths m and n is

E = mnKe™ Equation 1

where K and A are parameters dependent on the amino acid
compositions of the sequences''. For values less than about 0.1, Eis
oftenanacceptableapproximation to P, the probability of occurrence
of one or more matches scoring S or greater. In a true coding region,
one reading frame may have a predicted amino acid composition
typical for biologically occurring proteins, while the other reading
frames exhibit anomalous compositions'*2. For thisreason, BLASTX
calculated separate Kand A values for each reading frame. Alignment
scores are often cited here in units of bits (binary digits), such that
their significance can be evaluated independently of the scale of the
scoring system employed'2. Each unitary increase in the bits of
information corresponds to a factor of two increase in the statistical
significance.

The BLAST algorithm operates in two successive stages,
“neighbourhood” word generation followed by the actual search,
with an implicit trade-off in speed versus sensitivity imparted in the
first stage®. A list of neighbourhood words of length W is generated
from consecutive, overlapping words of length W in the query
sequence, using a specified scoring matrix. The neighbourhood list
contains all words which satisfy a threshold scoring parameter, T,
when aligned with words in the query sequence. Raising T decreases
the size of the neighbourhood and, consequently, increases the
search speed in the algorithm’s second stage, but at the expense of
decreased sensitivity". In BLASTX, the neighbourhood wordlist was
built from the conceptual translations of all six reading frames on
both strands of the query sequence, and this word list was stored in
a class of data structures known as a deterministic finite-state
automaton (DFA)Y. Depending on the scoring matrix and value
chosen for T, a given word of length W in the query sequence may
yield no neighbourhood words. The fundamental BLAST algorithm
was enhanced by including any query word in the DFA, aslong as the
score of the word when aligned with itself was positive.

During the second stage of the BLAST algorithm, the
neighbourhood words from the first stage are searched for in the
database or “target” sequence; the presence of a neighbourhood
word match indicates the possible location of an HSP. Individual
neighbourhood word matches (or word “hits” ) are extended in both
directions along the matrix diagonal until the ends are reached or the
cumulative alignment score falls from its maximum achieved value
by a parameterized quantity X. In BLASTX and BLASTP, the initial
word hits were found by streaming database sequences through the
automaton; after hit extension, only those segment pairs whose
scores met or exceeded a cutoff score, S, were reported to the user.
Rather than choose a value for S explicitly, users often found it more
natural to specify a maximum expected frequency of occurrence, E,
for HSPs to be reported by the program. From the specified value of
E and the relationship shown in equation 1, BLASTX calculated the
value for S necessary to achieve the desired level of significance, asa
function of the length and amino acid composition of the query
sequence in each reading frame, the length of the database, and the
particular scoring matrix employed; a fixed set of amino acid
frequencies characteristic of general protein databases was also used
in these calculations®. .

The BLAST algorithm is heuristic but has the property that any
desired sensitivity in the detection of MSPs may be obtained at the
cost of increased computation time. For the particular parameter
values used to obtain the BLASTX results presented here (word
length W=3 with T determined by an ad hocformula and a PAM120
matrix), the predicted sensitivity of BLAST in finding an MSP with
a score of 32 bits or greater is very nearly 100%", (In contrast, the
program BLASTN for comparing nucleotide sequences uses alonger
word length of 12 and builds its DFA from a very restricted set of
neighbourhood words — just the query words themselves — thus
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achieving high speed at the expense of sensitivity'*.)

Simultaneous translation and alignment strategies multiply the
effective size of the query sequence. Instead of searching a single
reading frame translation of the query against the database, BLASTX
searches six reading frames, so the DFA used to implement the
neighbourhood search in BLASTX is roughly six times the size it
would be for one frame only. The search speed of the DFA itself is
unaffected by the query length. Even for modest queries (>50
nucleotides or 100 amino acids) the rate limiting step is extension of
the word hits found by the DFA. The number of such hits was
expected to be proportional to the product of the query and database
lengths. In one example, BLASTX searched a 20 million residue
protein sequence database in 120 s for a 2,115 nucleotide (4,226
amino acids translated) query sequence (GenBank®71 locus
HUMBARRY), or only about 6-fold longer than the 20 s required for
BLASTP to search the same database with the encoded 413 amino
acid protein sequence, a sequence roughly one-tenth as long. This
modest discrepancy in relative execution times is largely attributable
to the use by BLASTP of a lower (more sensitive) neighbourhood
word score threshold, T, resulting in an increased number of word
hits and subsequent word hit extensions.

Parallel processing of BLAST calculations. Multiprocessing
capabilities were exploited when either BLASTX or BLASTP executed
on Silicon Graphics, Inc. (SGI) PowerIRIS platforms, including the
models 4D/240 and 4D/480. These systerns provided respectively 4
and 8 processors, for which real-time processing improvements of
about 3- and 6-fold were observed. For example, in probing a 703
nucleotide mRNA sequence encoding bovine lactalbumin against
release 32.0 of the PIR database with BLASTX, 0.2 s of CPU time in
serial mode was required to build the DFA, followed by 21 s real time
in 8-processor parallel search mode, and finishing with 3 s of single-
processor time to report the results, yielding an overall efficiency of
86%.

Construction of the DFA to recognize neighbourhood words
was performed serially on one processor. The search was then run
in parallel with individual processors accessing the same DFA (as
read only memory) to search dynamically assigned segments of
the database. While searching, each processor compiled alocal list
of HSPs in common heap storage, with only intermittent
interprocessor communication required; the efficiency of multiple
processor use during this phase approached 100%. After all of the
processors had searched their database segments, the program
reverted to single processor mode and the individual HSP lists
were merged into a single list that was then sorted by statistical
significance. No interprocessor communication overhead was
incurred for merging the lists because of their placement in
common heap storage.

To facilitate repetitive or concurrent searches, BLASTX and
BLASTP optionally searched database filesloaded semi-permanently
in shared memory, thus significantly reducing the overhead of disk
1/0 and contention for disk-based resources. Shared memory was
managed using AT&T UNIX System V interprocess communication
(IPC) facilities, including semaphoresand message queues to arbitrate
access and signal updates to the memory-resident database files.

Analysis of sensitivity to sequence errors. The probability that an
MSP is recognizable by the BLAST algorithm using an error-prone
query sequence was estimated by sampling using randomly generated
peptide sequence data constrained to an amino acid composition
typical for that observed in protein sequence databases®. For each
query sequence, a target sequence was generated using the transition
probabilities underlying the PAM model**'2, Insertion and deletion
error sites were then generated randomly in the query sequence and
alignments of the remaining continuous segments were scored with
aPAM120 matrix. 2,000 trials were performed at each integral value
of PAM from one through 250, and a least-squares curve was fit
through the resulting data. Calculations were implemented in the §
statistical analysis language (AT&T).

Software compatibility and availability. The programs described
here were implemented in the C programming language and are
compatible with many UNIX-based computing platforms. Complete,
public domain source code is available over the Internet via
anonymous FTP (file transfer protocol) on ncbinlm.nih.gov
(130.14.20.1) or by contacting W.G. at gish@ncbi.nlm.njh.gov.
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